binary-tree Algorithm

The binary tree algorithm is a widely-used data structure in computer science that allows efficient organization, searching, and manipulation of hierarchical data. It is a tree-like structure, where each node has at most two child nodes, usually referred to as the left and right children. Each child node is itself the root of a binary tree, and the top node in the structure is called the root node. The binary tree algorithm is particularly useful in applications that require fast and efficient searching, insertion, and deletion operations, such as databases, file systems, and programming language compilers. One of the most common types of binary trees is the binary search tree, which has the property that the value of a node is greater than or equal to all values in its left subtree and less than or equal to all values in its right subtree. This property enables fast search operations, as each comparison allows the algorithm to eliminate half of the remaining tree when searching for a specific value. Additionally, binary search trees enable efficient insertion and deletion of elements, as these operations can be performed in logarithmic time complexity, assuming the tree is balanced. However, the performance of the binary tree algorithm strongly depends on the tree's balance, and unbalanced trees can result in degraded performance. To address this issue, self-balancing binary trees, such as AVL and Red-Black trees, automatically reorganize themselves to maintain balance during insertions and deletions, ensuring optimal performance.
// basic binary tree and related operations

package binarytree

// package main

import "fmt"

type node struct {
	val   int
	left  *node
	right *node
}

type btree struct {
	root *node
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func newNode(val int) *node {
	n := &node{val, nil, nil}
	return n
}

func inorder(n *node) {
	if n == nil {
		return
	}
	inorder(n.left)
	fmt.Print(n.val, " ")
	inorder(n.right)
}

func preorder(n *node) {
	if n == nil {
		return
	}
	fmt.Print(n.val, " ")
	inorder(n.left)
	inorder(n.right)
}

func postorder(n *node) {
	if n == nil {
		return
	}
	inorder(n.left)
	inorder(n.right)
	fmt.Print(n.val, " ")
}

func levelorder(root *node) {
	var q []*node // queue
	var n *node   // temporary node

	q = append(q, root)

	for len(q) != 0 {
		n, q = q[0], q[1:]
		fmt.Print(n.val, " ")
		if n.left != nil {
			q = append(q, n.left)
		}
		if n.right != nil {
			q = append(q, n.right)
		}
	}
}

// helper function for t.depth
func _calculate_depth(n *node, depth int) int {
	if n == nil {
		return depth
	}
	return max(_calculate_depth(n.left, depth+1), _calculate_depth(n.right, depth+1))
}

func (t *btree) depth() int {
	return _calculate_depth(t.root, 0)
}

/*
func main() {
	t := btree{nil}
	t.root = newNode(0)
	t.root.left = newNode(1)
	t.root.right = newNode(2)
	t.root.left.left = newNode(3)
	t.root.left.right = newNode(4)
	t.root.right.left = newNode(5)
	t.root.right.right = newNode(6)
	t.root.right.right.right = newNode(10)

	inorder(t.root)
	fmt.Print("\n")
	preorder(t.root)
	fmt.Print("\n")
	postorder(t.root)
	fmt.Print("\n")
	levelorder(t.root)
	fmt.Print("\n")
	fmt.Print(t.depth(), "\n")
}
*/

LANGUAGE:

DARK MODE: